
When I meet God, I am going to ask him two questions : Why relativity ? And why turbulence ? I
really believe he will have an answer for the first.

–Werner Heisenberg

1 Mécanique des fluides

1.1 Généralités, échelle de travail

A l’état fluide, la matière peut s’écouler. Gaz et liquides ont été définis dans le cours de
thermodynamique, s’y reporter si nécessaire.

En mécanique des fluides comme en thermodynamique, on travaille en hydrodynamique à
l’échelle mésoscopique.

Définition 1 : Échelle mésoscopique

C’est l’échelle intermédiaire entre microscopique et macroscopique, telle que

échelle microscopique << échelle mésoscopique << échelle macroscopique

En pratique, pour nous, cela correspond à des particules de taille de l’ordre de 0, 1 à
1 µm.

On étudie ainsi des particules de fluides suffisamment petites pour être considérées
ponctuelles à l’échelle macroscopique, et suffisamment grande pour apparaître continue : les
grandeurs macroscopiques (pression, masse volumique) peuvent être définies.

1.2 La pression

Définition 2 : Pression

Les particules microscopiques de fluide sont toujours en mouvement, ce qui se traduit
par une force pressante exercée normalement (cf cours de thermo) sur toute surface en
contact avec le liquide. C’est la pression, qui s’exprime en Pascal, noté Pa : 1Pa = 1N ·m−2.
On a :

P =
norme de la force pressante normale

surface sur laquelle elle s’exerce
=

∥d⃗f∥
∥d⃗S∥

Quelques ordres de grandeur :

Lieu Pression (Pa)
Surface terrestre, en moyenne 1,013× 105

Sommet de l’Everest 3,0× 104

Fond de l’océan 1,1× 108

Ultravide en laboratoire 10−10 à 10−12
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Méthode 1 : Equation fondamentale de la statique des fluides et poussée d’Archimède

Figure 1 – Pression hydrostatique

On étudie une particule infinitésimale parallépipé-
dique et d’une masse volumique uniforme ρp, dans
un fluide à l’équilibre de masse volumique locale ρ,
à laquelle on va appliquer le Principe Fondamental
de la Dynamique.
Notons e⃗z l’axe vertical : g⃗ = −ge⃗z.

— Système : particule parallépipédique, de
masse m = ρpSdz

— Référentiel : terrestre supposé galiléen

— Forces :

— Poids : −ρpgSdze⃗z

— Pression sur la surface du bas : ⃗Fbas =
+p(z) · Se⃗z

— Pression sur la surface du haut : ⃗Fhaut =
−p(z + dz) · Se⃗z

— Les pressions sur les surfaces latérales
se compensent par symétrie.

Le PFD de cet équilibre s’écrit alors, en projetant sur e⃗z :

0 = −ρpSgdz + p(z)S − p(z + dz)S

soit
−ρpgSdz = p(z + dz)− p(z)

On va se servir de cela pour établir nos deux résultats.

— Si notre particule est une particule du fluide, on a p(z + dz) − p(z) = dP
dz dz par un

développement de Taylor, et ρp = ρ, d’où

dP
dz = −ρg

après simplification : c’est l’équation fondamentale de la statique des fluides.

— Si notre particule est un corps quelconque, la résultante des forces de pressions
est δ⃗Π = −S(P (z + dz)− P (z))e⃗z = −dV dP

dz e⃗z. Donc , avec le résultat précédent :

Π⃗ = dV ρge⃗z

C’est l’expression de la poussée d’Archimède. De manière plus générale, sur un corps
immergé (et pas forcément infinitésimal) de volume V , la poussée d’Archimède
vaut Π⃗ = ρgV e⃗z. On retrouve cela en intégrant sur sur ledit volume.

Méthode 2 : Pression dans un fluide incompressible

Ceci est une application capitale et quasiment immédiate de l’équation précédente. On
considère une colonne d’un fluide incompressible. En intégrant dP

dz = −ρg, on a
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P (z) = P0 + ρgz

où P0 est la pression en surface et z la profondeur.
Notons que la pression ne dépend donc que de la profondeur, et pas de l’endroit
considéré dans le liquide.

1.3 L’équation de continuité

Si un fluide de masse volumique ρ s’écoule à travers une surface S pendant ∆t, à une
vitesse moyenne v, le débit massique Dm est défini par

Dm =
∆m

∆t
= ρvS

Figure 2 – Evolution de la section d’une canali-
sation

Le débit volumique correspond à l’équi-
valent pour le volume : si un volume ∆V a
traversé la surface, le débit volumiuque est

Dv =
∆V

∆t
= vS

Bien sûr, comme ∆m = ρ∆V , on a Dm = ρDv

L’équation de continuité dit que, pour l’écou-
lement d’un fluide incompressible, ces quan-
tités sont constantes. Ainsi, pour un fluide
incompressible,

vS = Cste

Par exemple, lors de l’évolution de la section
d’une canalisation comme sur la figure 2, cela
se traduit par l’égalité v1S1 = v2S2.
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2 Écoulement et théorème de Bernoulli

2.1 Théorème de Bernoulli

Le théorème de Bernoulli traduit la conservation de l’énergie dans le fluide. Sa démonstration
n’est pas exigible, ni même son énoncé pour l’épreuve de sélection pour les terminales. On
l’admettra donc, en étudiant certains de ses applications.

Propriété 1 : Théorème de Bernoulli

Soit un fluide en écoulement parfait (sans frottement visqueux), stationnaire et incom-
pressible. On admet alors l’équation de Bernoulli : en tout point M du fluide, on note v la
vitesse du fluide, P sa pression, ρ sa masse volumique, z l’altitude. Alors :

v2

2
+ gz +

p

ρ
= Cste

Si l’écoulement varie suffisamment lentement au cours du temps, on pourra le considérer
comme stationnaire pour appliquer le théorème.
Pour aiguiller le sens physique, cela traduit une conservation d’énergie : le premier
terme est l’énergie cinétique, le deuxième l’énergie potentielle de pesanteur, le troisième
l’énergie associée aux forces de pression.

Ainsi, dans un écoulement parallèle, les zones de rétrécissement sont celles de pression
minimale.
Cela explique par exemple la forme des ailes d’avions : les ailes étant bombées, l’air a plus de
distance à parcourir lorsqu’il passe par-dessus l’aile que lorsqu’il passe dessous. S’ensuit une
pression plus élevée en dessous qu’au-dessus de l’aile, donc une portance.

2.1.1 Exemple : Le phénomène de Venturi

Figure 3 – Schéma : effet Venturi

Un tube de Venturi est un tube
dont la section connaît un rétrécisse-
ment qui conserve la symétrie cylin-
drique, qui a donc deux sections diffé-
rentes SA et SB comme sur le schéma.
Un fluide considéré parfait incompres-
sible de masse volumique ρ s’écoule
en régime permanent dans ce tube. On
constate que les altitudes hA et hB des
surfaces libres d’eau ne sont pas les
mêmes dans les différents tubes verti-
caux.

En effet, l’équation de continuité nous dit
que

vaSA = vBSB

.
On peut alors utiliser l’équation de Bernoulli :

pA + ρ
v2A
2

+ ρgzA = pB + ρ
v2B
2

+ ρgzB
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qui se réécrit

(pA − pB) =
ρv2A((

SA
SB

)2 − 1)

2

car zA = zB . Enfin, dans les tubes verticaux, le fluide est au repos, ce qui permet d’écrire
(pression dans un fluide incompressible) :

pA = p0 + ρghA

et
pB = p0 + ρghB

En assemblant :

ρg(hA − hB) =
ρv2A((

SA
SB

)2 − 1)

2
.
On arrive à une expression de la vitesse à partir des sections, de g, et de hA et hB ! En effet,
on a finalement

vA =

√
2g

hA − hB

(SA
SB

)2 − 1

On remarquera que la surface libre la plus haute correspond à la section la plus grande.

2.1.2 Exemple : Le théorème de Torricelli

Figure 4 – Schéma : théorème de Torricelli

Une autre application relativement simple
du théorème de Bernoulli est le problème
suivant : on considère un bocal de section S,
rempli d’un liquide incompressible et masse
volumique ρ, et percé d’un trou de diamètre
petit devant la section du bocal, duquel sort
du liquide.
On adopte les notations du schéma. On va ex-
primer la vitesse d’éjection de l’eau au niveau
du trou en fonction uniquement de g et de la
hauteur h entre le trou et la surface libre.
Premièrement, l’équation de continuité assure
que vA = s

S vB .Comme s
S << 1 on a vA << vB .

Écrivons maintenant l’équation de Bernoulli :

pA + ρ
v2A
2

+ ρgzA = pB + ρ
v2B
2

+ ρgzB

Comme les points A et B sont au contact de l’atmosphère, pA = pB . De plus, h = zA − zB par
définition.
On peut donc écrire

gh =
v2b − v2A

2

Comme vA << vB , on peut approximer v2B − v2A ≈ v2B , d’où finalement

vB =
√
2gh

la formule espérée !
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3 Tensions de surface

Disclaimer : les tensions de surface ne sont au programme du test de présélection des IPhOs
que pour les élèves en 1e année de CPGE. On ne les retrouvera pas dans le fichier d’exercices.
Le lecteur intéressé pourra consulter le cours de FemtoPhysique sur la tension superficielle,
qui détaille plus le sujet, et dont les exemples peuvent tout à fait servir d’exercices pour
appréhender les notions.

3.1 Energie superficielle

Lorsqu’on pose une petite pièce délicatement sur une surface d’eau, celle-ci peut flotter,
ce que les phénomènes vus jusqu’ici ne permettent pas d’expliquer. Cela fait en effet appel
aux tensions de surface, auxquelles la troisième partie de ce cours est consacrée.

3.1.1 Origine microscopique

Figure 5 – Schéma : origine mi-
croscopique tension de surface

Pour comprendre l’origine de la tension superfi-
cielle, il faut retourner à l’échelle microscopique du
liquide. Dans un liquide, chaque particule est sou-
mise à l’attraction de Van der Waals (et/ou liaison
hydrogène) des particules voisines. La résultante de
ces forces est nulle si la particule considérée n’est
pas au bord du liquide car ces forces sont diri-
gées dans toutes les directions. Cependant, cela n’est
plus le cas si on considère une particule de liquide
à l’interface, par exemple, entre ledit liquide et un
gaz.
Alors, la résultante est orientée côté liquide, et tout se
passe comme si une membrane était "tendue" au-dessus
du liquide. L’épaisseur de la couche superificielle concernée
est de l’ordre de 1 à 100nm.

L’énergie potentielle dont dérive cette force superficielle
dépend du liquide, et de la surface de l’interface. Pour mi-
nimiser cette énergie potentielle, tout système liquide va
donc tendre à minimiser sa surface.
Cela explique la forme des bulles de savon : comme la
sphère est la géométrie qui minimise la surface pour un volume donné (ici un volume d’air
emprisonné), la bulle adopte spontanément cette forme.

Définition 3 : Energie superficielle

On peut définir une énergie surfacique, notée σ ou γ et qui s’exprime en J ·m−2, soit en
N ·m−1, qui dépend du liquide considéré et de la température, telle qu’il faut apporter
une énergie σdS pour agrandir l’interface d’une surface dS

Le coefficient de proportionnalité σ est le coefficient de tension superficielle. En voici
quelques ordres de grandeur :
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Liquide σ à 20 ◦C (Jm−2)
Eau 73 · 10−3

Ethanol 22 · 10−3

Mercure 480 · 10−3

3.2 Force capillaire

Figure 6 – Schéma : force capillaire

On considère un cadre métallique comme
sur le schéma ci-contre, dont un côté peut
se translater, sur lequel est formé un film de
savon. On constate alors une force qui tire
sur l’interface, tangentiellement à la surface,
de manière à réduire son aire.
Ainsi, sur une tige mobile de longueur L, la
surface exerce une force en traction de F =
σL ; il faut donc apporter une énergie δE =
Fδx = σLδx pour tirer la tige de δx de manière
à agrandir l’interface, sur la gauche sur le
schéma ci-contre.

3.3 Calculs de pressions

Lorsqu’on traverse une surface de séparation entre deux fluides dont les rayons de courbure
sont R et R′, la différence de pression entre l’intérieur et l’extérieur est

∆p = pint − pext = σ(
1

R
+

1

R′ )

.
Les deux rayons de courbure sont les rayons de courbure dans deux directions perpendiculaires
entre elles et toutes deux tangentes à la surface. Ainsi, pour une courbure sphérique, R = R′,
et pour une courbure cylindrique, R′ = 0.

Méthode 3 : Bulle de savon

Pour une bulle de savon sphérique de rayon R, on a R = R′. Comme on traverse deux
interfaces air-savon, la bulle étant remplie d’air, on a pint − pext = 4 σ

R
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