O PhYSiC"'é IPhO : Mécanique des

fluides

When | meet God, | am going to ask him two questions : Why relativity ? And why turbulence ? |
really believe he will have an answer for the first.
—Werner Heisenberg

1 Mécanique des fluides

1.1 Généralités, échelle de travail

A létat fluide, la matiere peut s’écouler. Gaz et liquides ont été définis dans le cours de
thermodynamique, s’y reporter si nécessaire.

En mécanique des fluides comme en thermodynamique, on travaille en hydrodynamique a
’échelle mésoscopique.

Définition 1 : Echelle mésoscopique
C’est l’échelle intermédiaire entre microscopique et macroscopique, telle que
échelle microscopique << échelle mésoscopique << échelle macroscopique

En pratique, pour nous, cela correspond a des particules de taille de U'ordre de 0,1 a
1 pm.

On étudie ainsi des particules de fluides suffisamment petites pour étre considérées
ponctuelles a ’échelle macroscopique, et suffisamment grande pour apparaitre continue : les
grandeurs macroscopiques (pression, masse volumique) peuvent étre définies.

1.2 La pression

Définition 2 : Pression

Les particules microscopiques de fluide sont toujours en mouvement, ce qui se traduit
par une force pressante exercée normalement (cf cours de thermo) sur toute surface en
contact avec le liquide. C’est la pression, qui s’exprime en Pascal, noté Pa : 1Pa = 1IN - m~2.

Ona:
norme de la force pressante normale  ||df]|

surface sur laquelle elle s’exerce ||dfg”

Quelques ordres de grandeur :

Lieu Pression (Pa)
Surface terrestre, en moyenne 1,013 x 10°
Sommet de ’Everest 3,0 x 104
Fond de l'océan 1,1 x 108
Ultravide en laboratoire 10719 3 10712
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O Physicité IPhO : Mécanique des fluides

Méthode 1: Equation fondamentale de la statique des fluides et poussée d’Archiméde

On étudie une particule infinitésimale parallépipé-

dique et d’une masse volumique uniforme p,, dans or
un fluide a l’équilibre de masse volumique locale p, ey ™S
a laquelle on va appliquer le Principe Fondamental = J /
de la Dynamique. -
Notons ¢, ’axe vertical : § = —ge.. N I
— Systeme : particule parallépipédique, de ‘;{1,
masse m = p,Sdz
— Référentiel : terrestre supposé galiléen
0__
— Forces :
— Poids : —p,gSdze;
— Pression sur la surface du bas : F,, = Figure 1 - Pression hydrostatique

+p(z) - Se;

— Pression sur la surface du haut : Fju =
—p(z +dz) - S€;,

— Les pressions sur les surfaces latérales
se compensent par symétrie.

Le PFD de cet équilibre s’écrit alors, en projetant sur €. :
0= —ppSgdz + p(z)S — p(z + dz)S
soit
—ppgSdz = p(z + dz) — p(z)

On va se servir de cela pour établir nos deux résultats.

— Si notre particule est une particule du fluide, on a p(z +dz) — p(z) = %dz par un
développement de Taylor, et p, = p, d’ou

df = —pg

aprés simplification : c’est ’équation fondamentale de la statique des fluides.

— Si notre particule est un corps quelconque, la résultante des forces de pressions
est 0l = —S(P(z + d2) — P(z))¢; = —dV4L¢.. Donc , avec le résultat précédent :
M= dV pge

C’est 'expression de la poussée d’Archiméde. De maniere plus générale, sur un corps
immergé (et pas forcément infinitésimal) de volume V, la poussée d’Archiméde
vaut II = pgVé,. On retrouve cela en intégrant sur sur ledit volume.

Méthode 2 : Pression dans un fluide incompressible

Ceci est une application capitale et quasiment immédiate de ’équation précédente. On
considere une colonne d’un fluide incompressible. En intégrant % = —pg, ONn a
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P(z) = Py + pgz

ou Py est la pression en surface et z la profondeur.

Notons que la pression ne dépend donc que de la profondeur, et pas de l’endroit
considéré dans le liquide.

1.3 L’équation de continuité

Si un fluide de masse volumique p s’écoule a travers une surface S pendant At, a une
vitesse moyenne v, le débit massique D,, est défini par

Le débit volumique correspond a l’équi-
valent pour le volume : si un volume AV a
traversé la surface, le débit volumiuque est

AV

Dy ="~
At

=vS

Bien sOr, comme Am = pAV, on a D,, = pD,
L’équation de continuité dit que, pour l’écou-
lement d’un fluide incompressible, ces quan-
tités sont constantes. Ainsi, pour un fluide
incompressible,

vS = Cste . ) . .
Figure 2 — Evolution de la section d’une canali-

Par exemple, lors de ’évolution de la section sation
d’une canalisation comme sur la figure 2, cela
se traduit par 'égalité v1.57 = v255.
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2 Ecoulement et théoréeme de Bernoulli

2.1 Théoréme de Bernoulli

Le théoréme de Bernoulli traduit la conservation de [’énergie dans le fluide. Sa démonstration
n’est pas exigible, ni méme son énoncé pour ’épreuve de sélection pour les terminales. On
’admettra donc, en étudiant certains de ses applications.

Propriété 1: Théoréme de Bernoulli

Soit un fluide en écoulement parfait (sans frottement visqueux), stationnaire et incom-
pressible. On admet alors l’équation de Bernoulli : en tout point M du fluide, on note v la
vitesse du fluide, P sa pression, p sa masse volumique, z laltitude. Alors :

2
= + gz + P _ Oste

2 P

Si ’écoulement varie suffisamment lentement au cours du temps, on pourra le considérer
comme stationnaire pour appliquer le théoreme.

Pour aiguiller le sens physique, cela traduit une conservation d’énergie : le premier
terme est l’énergie cinétique, le deuxieme l’énergie potentielle de pesanteur, le troisieme
’énergie associée aux forces de pression.

Ainsi, dans un écoulement parallele, les zones de rétrécissement sont celles de pression
minimale.
Cela explique par exemple la forme des ailes d’avions : les ailes étant bombées, ’air a plus de
distance a parcourir lorsqu’il passe par-dessus ’aile que lorsqu’il passe dessous. S’ensuit une
pression plus élevée en dessous qu’au-dessus de l’aile, donc une portance.

2.1.1 Exemple : Le phénoméne de Venturi

Un tube de Venturi est un tube
dont la section connalt un rétrécisse-

ment qui conserve la symétrie cylin-
drigue, qui a donc deux sections diffé- Y I
rentes Sy, et Sgp comme sur le schéma. )‘
Un fluide considéré parfait incompres- ha .
sible de masse volumique p s’écoule /e I B
en régime permanent dans ce tube. On /‘\ - O | by
constate que les altitudes hy et hp des |'§ — :
surfaces libres d’eau ne sont pas les L | -1 [L
mémes dans les différents tubes verti- | ‘| . v Sg
caux. \ f
g ™ =y

En effet, 'équation de continuité nous dit
que

VoS4 = vBSE Figure 3 — Schéma : effet Venturi
On peut alors utiliser ’équation de Bernoulli :

v vh
pA+p7+ngA:pB+p7+pQZB
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qui se réécrit
P ((32)2 - 1)
2
car z4 = zp. Enfin, dans les tubes verticaux, le fluide est au repos, ce qui permet d’écrire
(pression dans un fluide incompressible) :

(pa —pB) =

pA = po + pgha
et
PB = po + pghp
En assemblant : 91/ SAN2
PUA((ﬁ) -1)
2

pg(ha —hp) =

On arrive a une expression de la vitesse a partir des sections, de g, et de hy et hg! En effet,
on a finalement

; 9% ha—hpg
A= TS, -
(550~ 1

On remarquera que la surface libre la plus haute correspond a la section la plus grande.

2.1.2 Exemple : Le théoréme de Torricelli

Une autre application relativement simple
du théoréme de Bernoulli est le probleme
suivant : on considére un bocal de section S,
rempli d’un liquide incompressible et masse
volumique p, et percé d’un trou de diametre
petit devant la section du bocal, duquel sort
du liquide.

On adopte les notations du schéma. On va ex-
primer la vitesse d’éjection de l’eau au niveau
du trou en fonction uniquement de g et de la
hauteur h entre le trou et la surface libre.

Premierement, ’équation de continuité assure

2

L
que vy = %vB.Comme % << lonawvy<<wg.
Ecrivons maintenant [’équation de Bernoulli :
2 2
pA + p%“ + pgza = pB + pUQ_B + pgzp Figure 4 — Schéma : théoreme de Torricelli

Comme les points A et B sont au contact de ’'atmosphere, p4 = pp. De plus, h = z4 — zp par
définition.
On peut donc écrire
v — 03
2

Comme vy << vp, ONn peut approximer v%4 — v ~ v%, d’ou finalement

vp = \/2gh

gh =

la formule espérée!
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3 Tensions de surface

Disclaimer : les tensions de surface ne sont au programme du test de présélection des IPhOs
que pour les éleves en 1e année de CPGE. On ne les retrouvera pas dans le fichier d’exercices.
Le lecteur intéressé pourra consulter le cours de FemtoPhysique sur la tension superficielle,
qui détaille plus le sujet, et dont les exemples peuvent tout a fait servir d’exercices pour
appréhender les notions.

3.1 Energie superficielle

Lorsqu’on pose une petite piece délicatement sur une surface d’eau, celle-ci peut flotter,
ce que les phénomenes vus jusqu’ici ne permettent pas d’expliquer. Cela fait en effet appel
aux tensions de surface, auxquelles la troisieme partie de ce cours est consacrée.

3.1.1 Origine microscopique

Pour comprendre Llorigine de la tension superfi-
cielle, il faut retourner a léchelle microscopique du
liquide. Dans un liquide, chaque particule est sou- 212,
mise a lattraction de Van der Waals (et/ou liaison )
hydrogéne) des particules voisines. La résultante de
ces forces est nulle si la particule considérée n’est
pas au bord du liquide car ces forces sont diri-

gées dans toutes les directions. Cependant, cela n’est et A ) _
plus le cas si on considére une particule de liquide .- _____ -:r'."%{- ___interface
a linterface, par exemple, entre ledit liquide et un .:’q "

gaz.

Alors, la résultante est orientée coté liquide, et tout se

passe comme si une membrane était "tendue" au-dessus . Ir’ )

du liquide. L’épaisseur de la couche superificielle concernée 1—:1-:;» liquide JF
est de lordre de 1 a 100nm. |

L’énergie potentielle dont dérive cette force superficielle

dépend du liquide, et de la surface de linterface. Pour mi-

nimiser cette énergie potentielle, tout systéme liquide va Figure 5 — Schema : origine mi-
donc tendre & minimiser sa surface. croscopique tension de surface
Cela explique la forme des bulles de savon : comme la

sphere est la géométrie qui minimise la surface pour un volume donné (ici un volume d’air
emprisonné), la bulle adopte spontanément cette forme.

Définition 3 : Energie superficielle

On peut définir une énergie surfacique, notée o ou v et qui s’exprime en J-m~2, soit en
N-m™!, qui dépend du liquide considéré et de la température, telle qu’il faut apporter
une énergie odS pour agrandir linterface d’une surface dS

Le coefficient de proportionnalité o est le coefficient de tension superficielle. En voici
quelques ordres de grandeur :

6/7



O Physicité IPhO : Mécanique des fluides

Liguide ¢ a20°C (Jm™?)
Eau 73-1073
Ethanol 22.1073
Mercure 480-1073

3.2 Force capillaire

On considére un cadre métallique comme

sur le schéma ci-contre, dont un c6té peut
se translater, sur lequel est formé un film de
savon. On constate alors une force qui tire
sur linterface, tangentiellement a la surface,
de maniére a réduire son aire.
Ainsi, sur une tige mobile de longueur L, la
surface exerce une force en traction de F =
oL; il faut donc apporter une énergie 0F =
Féx = oLdx pour tirer la tige de dx de maniere
a agrandir linterface, sur la gauche sur le
schéma ci-contre.

Figure 6 — Schéma : force capillaire

3.3 Calculs de pressions

Lorsqu’on traverse une surface de séparation entre deux fluides dont les rayons de courbure
sont R et R, la différence de pression entre lintérieur et 'extérieur est

1 1
Ap = Pint — Pext = U(E + E)
Les deux rayons de courbure sont les rayons de courbure dans deux directions perpendiculaires
entre elles et toutes deux tangentes a la surface. Ainsi, pour une courbure sphérique, R = R/,
et pour une courbure cylindrique, R’ = 0.

Méthode 3 : Bulle de savon

Pour une bulle de savon sphérique de rayon R, on a R = R’. Comme on traverse deux
interfaces air-savon, la bulle étant remplie d’air, on a piy¢ — peat = 4%
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